Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38328175

RESUMO

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disease characterized by the development of arteriovenous malformations (AVMs) that can result in significant morbidity and mortality. HHT is caused primarily by mutations in bone morphogenetic protein receptors ACVRL1/ALK1, a signaling receptor, or endoglin (ENG), an accessory receptor. Because overexpression of Acvrl1 prevents AVM development in both Acvrl1 and Eng null mice, enhancing ACVRL1 expression may be a promising approach to development of targeted therapies for HHT. Therefore, we sought to understand the molecular mechanism of ACVRL1 regulation. We previously demonstrated in zebrafish embryos that acvrl1 is predominantly expressed in arterial endothelial cells and that expression requires blood flow. Here, we document that flow dependence exhibits regional heterogeneity and that acvrl1 expression is rapidly restored after reinitiation of flow. Furthermore, we find that acvrl1 expression is significantly decreased in mutants that lack the circulating Alk1 ligand, Bmp10, and that BMP10 microinjection into the vasculature in the absence of flow enhances acvrl1 expression in an Alk1-dependent manner. Using a transgenic acvrl1:egfp reporter line, we find that flow and Bmp10 regulate acvrl1 at the level of transcription. Finally, we observe similar ALK1 ligand-dependent increases in ACVRL1 in human endothelial cells subjected to shear stress. These data suggest that Bmp10 acts downstream of blood flow to maintain or enhance acvrl1 expression via a positive feedback mechanism, and that ALK1 activating therapeutics may have dual functionality by increasing both ALK1 signaling flux and ACVRL1 expression.

2.
Cells ; 13(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38334677

RESUMO

Endothelial cells (ECs) respond to concurrent stimulation by biochemical factors and wall shear stress (SS) exerted by blood flow. Disruptions in flow-induced responses can result in remodeling issues and cardiovascular diseases, but the detailed mechanisms linking flow-mechanical cues and biochemical signaling remain unclear. Activin receptor-like kinase 1 (ALK1) integrates SS and ALK1-ligand cues in ECs; ALK1 mutations cause hereditary hemorrhagic telangiectasia (HHT), marked by arteriovenous malformation (AVM) development. However, the mechanistic underpinnings of ALK1 signaling modulation by fluid flow and the link to AVMs remain uncertain. We recorded EC responses under varying SS magnitudes and ALK1 ligand concentrations by assaying pSMAD1/5/9 nuclear localization using a custom multi-SS microfluidic device and a custom image analysis pipeline. We extended the previously reported synergy between SS and BMP9 to include BMP10 and BMP9/10. Moreover, we demonstrated that this synergy is effective even at extremely low SS magnitudes (0.4 dyn/cm2) and ALK1 ligand range (femtogram/mL). The synergistic response to ALK1 ligands and SS requires the kinase activity of ALK1. Moreover, ALK1's basal activity and response to minimal ligand levels depend on endocytosis, distinct from cell-cell junctions, cytoskeleton-mediated mechanosensing, or cholesterol-enriched microdomains. However, an in-depth analysis of ALK1 receptor trafficking's molecular mechanisms requires further investigation.


Assuntos
Malformações Arteriovenosas , Telangiectasia Hemorrágica Hereditária , Humanos , Células Endoteliais , Ligantes , Telangiectasia Hemorrágica Hereditária/genética , Transdução de Sinais , Proteínas Morfogenéticas Ósseas
3.
Crit Care ; 27(1): 491, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098060

RESUMO

BACKGROUND: Brain injury is a leading cause of morbidity and mortality in patients resuscitated from cardiac arrest. Mitochondrial dysfunction contributes to brain injury following cardiac arrest; therefore, therapies that limit mitochondrial dysfunction have the potential to improve neurological outcomes. Generation of reactive oxygen species (ROS) during ischemia-reperfusion injury in the brain is a critical component of mitochondrial injury and is dependent on hyperactivation of mitochondria following resuscitation. Our previous studies have provided evidence that modulating mitochondrial function with specific near-infrared light (NIR) wavelengths can reduce post-ischemic mitochondrial hyperactivity, thereby reducing brain injury during reperfusion in multiple small animal models. METHODS: Isolated porcine brain cytochrome c oxidase (COX) was used to investigate the mechanism of NIR-induced mitochondrial modulation. Cultured primary neurons from mice expressing mitoQC were utilized to explore the mitochondrial mechanisms related to protection with NIR following ischemia-reperfusion. Anesthetized pigs were used to optimize the delivery of NIR to the brain by measuring the penetration depth of NIR to deep brain structures and tissue heating. Finally, a model of out-of-hospital cardiac arrest with CPR in adult pigs was used to evaluate the translational potential of NIR as a noninvasive therapeutic approach to protect the brain after resuscitation. RESULTS: Molecular evaluation of enzyme activity during NIR irradiation demonstrated COX function was reduced in an intensity-dependent manner with a threshold of enzyme inhibition leading to a moderate reduction in activity without complete inhibition. Mechanistic interrogation in neurons demonstrated that mitochondrial swelling and upregulation of mitophagy were reduced with NIR treatment. NIR therapy in large animals is feasible, as NIR penetrates deep into the brain without substantial tissue heating. In a translational porcine model of CA/CPR, transcranial NIR treatment for two hours at the onset of return of spontaneous circulation (ROSC) demonstrated significantly improved neurological deficit scores and reduced histologic evidence of brain injury after resuscitation from cardiac arrest. CONCLUSIONS: NIR modulates mitochondrial function which improves mitochondrial dynamics and quality control following ischemia/reperfusion. Noninvasive modulation of mitochondria, achieved by transcranial treatment of the brain with NIR, mitigates post-cardiac arrest brain injury and improves neurologic functional outcomes.


Assuntos
Lesões Encefálicas , Reanimação Cardiopulmonar , Doenças Mitocondriais , Parada Cardíaca Extra-Hospitalar , Humanos , Camundongos , Animais , Suínos , Mitocôndrias , Isquemia , Modelos Animais de Doenças
4.
Cells ; 11(19)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36231044

RESUMO

Disruption of mitochondrial structure/function is well-recognized to be a determinant of cell death in cardiomyocytes subjected to lethal episodes of ischemia-reperfusion (IR). However, the precise mitochondrial event(s) that precipitate lethal IR injury remain incompletely resolved. Using the in vitro HL-1 cardiomyocyte model, our aims were to establish whether: (1) proteolytic processing of optic atrophy protein-1 (OPA1), the inner mitochondrial membrane protein responsible for maintaining cristae junction integrity, plays a causal, mechanistic role in determining cardiomyocyte fate in cells subjected to lethal IR injury; and (2) preservation of OPA1 may contribute to the well-documented cardioprotection achieved with ischemic preconditioning (IPC) and remote ischemic conditioning. We report that HL-1 cells subjected to 2.5 h of simulated ischemia displayed increased activity of OMA1 (the metalloprotease responsible for proteolytic processing of OPA1) during the initial 45 min following reoxygenation. This was accompanied by processing of mitochondrial OPA1 (i.e., cleavage to yield short-OPA1 peptides) and release of short-OPA1 into the cytosol. However, siRNA-mediated knockdown of OPA1 content did not exacerbate lethal IR injury, and did not attenuate the cardioprotection seen with IPC and a remote preconditioning stimulus, achieved by transfer of 'reperfusate' medium (TRM-IPC) in this cell culture model. Taken together, our results do not support the concept that maintenance of OPA1 integrity plays a mechanistic role in determining cell fate in the HL-1 cardiomyocyte model of lethal IR injury, or that preservation of OPA1 underlies the cardioprotection seen with ischemic conditioning.


Assuntos
Atrofia Óptica , Traumatismo por Reperfusão , Morte Celular , GTP Fosfo-Hidrolases/metabolismo , Humanos , Isquemia/metabolismo , Metaloproteases/metabolismo , Miócitos Cardíacos/metabolismo , Atrofia Óptica/metabolismo , RNA Interferente Pequeno/metabolismo , Traumatismo por Reperfusão/metabolismo
5.
Cell Death Dis ; 12(5): 475, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980811

RESUMO

Mitochondrial dynamics and mitophagy are constitutive and complex systems that ensure a healthy mitochondrial network through the segregation and subsequent degradation of damaged mitochondria. Disruption of these systems can lead to mitochondrial dysfunction and has been established as a central mechanism of ischemia/reperfusion (I/R) injury. Emerging evidence suggests that mitochondrial dynamics and mitophagy are integrated systems; however, the role of this relationship in the context of I/R injury remains unclear. To investigate this concept, we utilized primary cortical neurons isolated from the novel dual-reporter mitochondrial quality control knockin mice (C57BL/6-Gt(ROSA)26Sortm1(CAG-mCherry/GFP)Ganl/J) with conditional knockout (KO) of Drp1 to investigate changes in mitochondrial dynamics and mitophagic flux during in vitro I/R injury. Mitochondrial dynamics was quantitatively measured in an unbiased manner using a machine learning mitochondrial morphology classification system, which consisted of four different classifications: network, unbranched, swollen, and punctate. Evaluation of mitochondrial morphology and mitophagic flux in primary neurons exposed to oxygen-glucose deprivation (OGD) and reoxygenation (OGD/R) revealed extensive mitochondrial fragmentation and swelling, together with a significant upregulation in mitophagic flux. Furthermore, the primary morphology of mitochondria undergoing mitophagy was classified as punctate. Colocalization using immunofluorescence as well as western blot analysis revealed that the PINK1/Parkin pathway of mitophagy was activated following OGD/R. Conditional KO of Drp1 prevented mitochondrial fragmentation and swelling following OGD/R but did not alter mitophagic flux. These data provide novel evidence that Drp1 plays a causal role in the progression of I/R injury, but mitophagy does not require Drp1-mediated mitochondrial fission.


Assuntos
Dinaminas/metabolismo , Dinâmica Mitocondrial/genética , Mitofagia/genética , Traumatismo por Reperfusão/genética , Animais , Humanos , Camundongos , Neurônios/metabolismo , Traumatismo por Reperfusão/metabolismo
6.
Sci Rep ; 11(1): 5133, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664336

RESUMO

The mitochondrial network continually undergoes events of fission and fusion. Under physiologic conditions, the network is in equilibrium and is characterized by the presence of both elongated and punctate mitochondria. However, this balanced, homeostatic mitochondrial profile can change morphologic distribution in response to various stressors. Therefore, it is imperative to develop a method that robustly measures mitochondrial morphology with high accuracy. Here, we developed a semi-automated image analysis pipeline for the quantitation of mitochondrial morphology for both in vitro and in vivo applications. The image analysis pipeline was generated and validated utilizing images of primary cortical neurons from transgenic mice, allowing genetic ablation of key components of mitochondrial dynamics. This analysis pipeline was further extended to evaluate mitochondrial morphology in vivo through immunolabeling of brain sections as well as serial block-face scanning electron microscopy. These data demonstrate a highly specific and sensitive method that accurately classifies distinct physiological and pathological mitochondrial morphologies. Furthermore, this workflow employs the use of readily available, free open-source software designed for high throughput image processing, segmentation, and analysis that is customizable to various biological models.


Assuntos
Encéfalo/diagnóstico por imagem , Aprendizado de Máquina , Mitocôndrias/ultraestrutura , Neurônios/ultraestrutura , Animais , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Humanos , Processamento de Imagem Assistida por Computador , Camundongos , Microscopia Eletrônica de Varredura , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Rede Nervosa/diagnóstico por imagem , Neurônios/metabolismo
7.
Mol Neurobiol ; 55(3): 2547-2564, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28401475

RESUMO

Mitochondria are key regulators of cell fate during disease. They control cell survival via the production of ATP that fuels cellular processes and, conversely, cell death via the induction of apoptosis through release of pro-apoptotic factors such as cytochrome C. Therefore, it is essential to have stringent quality control mechanisms to ensure a healthy mitochondrial network. Quality control mechanisms are largely regulated by mitochondrial dynamics and mitophagy. The processes of mitochondrial fission (division) and fusion allow for damaged mitochondria to be segregated and facilitate the equilibration of mitochondrial components such as DNA, proteins, and metabolites. The process of mitophagy are responsible for the degradation and recycling of damaged mitochondria. These mitochondrial quality control mechanisms have been well studied in chronic and acute pathologies such as Parkinson's disease, Alzheimer's disease, stroke, and acute myocardial infarction, but less is known about how these two processes interact and contribute to specific pathophysiologic states. To date, evidence for the role of mitochondrial quality control in acute and chronic disease is divergent and suggests that mitochondrial quality control processes can serve both survival and death functions depending on the disease state. This review aims to provide a synopsis of the molecular mechanisms involved in mitochondrial quality control, to summarize our current understanding of the complex role that mitochondrial quality control plays in the progression of acute vs chronic diseases and, finally, to speculate on the possibility that targeted manipulation of mitochondrial quality control mechanisms may be exploited for the rationale design of novel therapeutic interventions.


Assuntos
Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Apoptose/fisiologia , Sobrevivência Celular/fisiologia , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Controle de Qualidade , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia
8.
J Strength Cond Res ; 27(2): 277-84, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23222088

RESUMO

The purpose of this study was to document changes in height (cm), body weight (kg), and body composition (%fat) of American football players from 1942 to 2011. Published articles were identified from databases and cross-referencing of bibliographies. Studies selected met the requirements of (1) having 2 of 3 dependent (height, body weight, and body composition) variables reported in the results; (2) containing a skill level of college or professional; (3) providing measured not self-reported data; and (4) published studies in English language journals. The data were categorized into groups based on skill level (college and professional). The player positions were grouped into 3 categories: mixed linemen (offensive and defensive linemen, tight ends, and linebackers), mixed offensive backs (quarterback and running backs), and mixed skilled positions (defensive backs and wide receivers). Linear regression was used to provide slope estimates and 95% confidence intervals (CIs). Unpaired t-tests were used to determine whether an individual regression slope was significantly different from zero. Statistical significance was set at p < 0.017. College level players in all position groups have significantly increased body weight over time (95% CI: mixed lineman 0.338-0.900 kg·y(-1); mixed offensive backs 0.089-0.298 kg·y(-1); mixed skilled 0.078-0.334 kg·y(-1)). The college level mixed linemen showed a significant increase over time for height (95% CI: 0.034-0.188 cm·y(-1)) and body composition (0.046-0.275% fat per year). Significant increases in body weight over time were found for professional level mixed lineman (95% CI: 0.098-0.756 kg·y(-1)) and mixed offensive backs (95% CI: 0.1800-0.545 kg·y(-1)). There were no other significant changes at the professional level. These data demonstrate that body weight of all college players and professional mixed lineman have significantly increased from 1942 to 2011.


Assuntos
Adiposidade , Estatura , Peso Corporal , Futebol Americano/tendências , Humanos , Modelos Lineares , Masculino , Papel Profissional , Estados Unidos , Universidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...